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Abstract. We consider the effects of a shear on velocity fluctuations in a flow. The shear gives rise to a
transient amplification that not only influences the amplitude of perturbations but also their time correla-
tions. We show that, in the presence of white noise, time correlations of transversal velocity components are
exponential and that correlations of the longitudinal components are exponential with an algebraic pref-
actor. Cross correlations between transversal and downstream components are strongly asymmetric and
provide a clear indication of non-normal amplification. We suggest experimental tests of our predictions.

PACS. 47.27.-i Turbulent flows, convection, and heat transfer – 05.40.Ca Noise – 47.20.Ft Instability of
shear flows

1 Introduction

There has been a resurgence of theoretical interest in
shear-driven flows, ubiquitous both in nature and in the
laboratory [1], because the linearization of the Navier-
Stokes equation about a laminar shear profile gives rise
to a non-normal linear operator. The eigenstates of this
operator are not orthogonal so, even if the laminar profile
is asymptotically stable, perturbations can grow as tran-
sients for a while before submitting eventually to viscous
damping [1–5]. This effect occurs generically if non-normal
linear operators arise during a linear-stability analysis and
it has been discussed at length in various contexts [6], in-
cluding the hydrodynamical one we concentrate on here.

Several authors have advocated the use of pseudo-
spectra in problems involving non-normal operators [4,7].
A complementary approach is to characterise the be-
haviour of non-normal systems by studying their response
to an externally imposed noise. Farrell and Ioannou [8,9]
showed that, in general, this results in an increased vari-
ance; they determined amplification rates and the pertur-
bations that give rise to the largest amplitudes for shear
flows [10]. Rather little has been said about temporal cor-
relations in such systems; an important, early exception is
the study by Onuki [11] whose emphasis is quite different
from ours as we explain below. But the temporal relation
between lift-up and other instabilities is at the heart of
the steady cycle that Waleffe et al. propose as the main
mechanism for sustaining turbulent fluctuations in shear
flows [12–14]. The idea is that downstream vortices give
rise to downstream streaks by non-normal amplification,
that the streaks go unstable to vertical vortex formation
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and that finally these vertical vortices are folded over into
downstream vortices by the linear shear profile.

It is our aim here to present results on correlations in
linear, non-normal systems driven by white noise and to
discuss their relevance to perturbed shear flows. Specif-
ically, we will show that temporal cross correlations be-
tween a streak and a vortex component can provide unam-
biguous signs of lift-up and non-normal amplification.

The formalism we use to study the fluctuations is sim-
ilar to Rapid Distortion Theory or RDT [15,16]. We as-
sume that we have a prescribed strong shear and follow
a perturbation in Fourier space, using Kelvin modes. In
order to avoid technical difficulties related to advecting
frames of reference or time-dependent wave vectors, we
use perturbations without variation in the flow direction.
Nevertheless, as we will discuss later on, there is numeri-
cal evidence that this does not significantly affect the main
conclusion that we draw about cross-correlations.

The outline of the paper is as follows: In Section 2 we
discuss a stochastic model with two degrees of freedom,
with one vortex and one shear component, that highlights
the non-normal coupling and the temporal correlations to
be expected. We then turn in Section 3 to a full discus-
sion of temporal correlations in the stochastically forced
Navier-Stokes equation linearised about a laminar shear
profile. Section 4 contains concluding remarks, suggestions
for experimental tests of our predictions, and a discussion
of the relation of our work to earlier studies.

2 A simple model

2.1 Vortex-streak coupling in shear flows

Consider a linear shear profile, U0 = Szex. Coordi-
nates are chosen in the meteorological convention, with x
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Fig. 1. Sketch of a vortex and a streak in a shear flow, looking downstream. The velocity components of the vortex lie in the
plane and are indicated by the arrows. The streak has only one velocity component perpendicular to the plane; its values are
indicated by a grey scale. The extrema of the streak (light and dark regions) are located near the maximal normal velocities.
All scales of length and velocity are arbitrary.

pointing downstream, y in the spanwise direction and z
pointing in the direction of the shear. The Navier-Stokes
equation for the fluid velocity u linearised around this
flow is

∂tu + (u · ∇)U0 + (U0 · ∇)u = −∇p + ν∆u, (1)

where p is the kinematic pressure and ν the kinematic
viscosity of the fluid. To keep the analysis as simple as
possible we work with the Fourier modes appropriate for
periodic boundary conditions in spanwise and downstream
directions, and free-slip boundary conditions on two par-
allel planes in the normal direction. The analysis of the
linear problem with Kelvin modes [17–19] shows that mod-
ulations in the downstream direction give rise to a time-
dependent wave vector and faster-than-exponential damp-
ing. Farrell and Ioannou [10] also show that the most
important modes for non-normal amplification do not
have a downstream variation. Therefore, we consider only
perturbations with wave numbers k = (0, ky, kz), where
ky is continuous and kz = πn/d, with n an integer and d
the distance between the bounding planes. These consid-
erations help us to identify scales for the flows considered
in this section; their full significance will become clear in
the next section.

In order to highlight the essentials of non-normal am-
plification, we now take a velocity field consisting of two
modes, namely, a spanwise streak

us =




α sin αy cosβz

0

0


 , (2)

and a downstream vortex

uω =




0

β cosαy sin βz

−α sinαy cosβz


 , (3)

with amplitudes s(t) and ω(t), i.e.,

u = s(t)us + ω(t)uω. (4)

The two modes are sketched in Figure 1. In the linearised
equation the pressure disappears as the velocity fields
are divergence-free. The term (U0 · ∇)u drops out and
(u ·∇)U0 results in a coupling between vortex and streak:(

ṡ

ω̇

)
=

(−ν(α2 + β2) S

0 −ν(α2 + β2)

)(
s

ω

)
· (5)

The matrix on the right hand side is not symmetric be-
cause of the coupling of both modes through the term
(u · ∇)U0 = Su3ex. The dynamics that follows from the
non-normal system (5) has exponentially decaying vortices
that drive spanwise streaks: if s0 and ω0 denote the initial
amplitudes, then

s(t) = (s0 + Sω0t)e−ν(α2+β2)t;

ω(t) = ω0e−ν(α2+β2)t. (6)

Clearly, even if there is no streak initially (i.e., s0 = 0),
there will be one as time progresses as a consequence of
the mixing induced by the downstream vortex. Eventually,
however, both will decay. The maximal amplitude of the
streak follows from the maximum of t exp(−ν(α2 + β2)t),
which occurs at a time

tmax =
1

ν(α2 + β2)
· (7)

Since the maximal amplitude of the downstream compo-
nent of the streak us is α, the maximal modulation of the
downstream velocity component follows to be

us,max = S
α

ν(α2 + β2)
ω0. (8)

Note that this is proportional to the shear (the larger the
shear the stronger the amplification) and to the inverse
of the viscosity. This model also allows us to draw con-
clusions about the sizes of the vortices: Assume that the
thickness in the shear direction, i.e., the wave number β,
is given. Then the maximal value of us,max is obtained
from differentiation of equation (8) for α = β. If β = π/d,
with d the separation between the plates, the wavelength
in the spanwise direction is about twice this width, i.e.,
λspan � 2π/β = 2d.
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2.2 Vortex-shear interactions with noise

Suppose now that we add noise to the above system.
Since the two components are already divergence-free, we
model the noise by adding the random perturbations ξs(t)
and ξω(t) to each component as follows:(

ṡ

ω̇

)
=

(−λ S

0 −λ

)(
s

ω

)
+

(
ξs

ξω

)
· (9)

For simplicity we assume that

〈ξs(t)ξs(t′)〉 = Dsδ(t − t′)

〈ξω(t)ξω(t′)〉 = Dωδ(t − t′)

〈ξs(t)ξω(t′)〉 = 0. (10)

The formalism is easily expanded to more general forms.
For notational convenience and since the quantitative de-
pendence on wave numbers and viscosity is of minor in-
terest in this section, we have defined λ = ν(α2 + β2). If
we start at t = −∞, the formal solution is

ω(t) =
∫ t

−∞
dt′ e−λ(t−t′)ξω(t′);

s(t) =
∫ t

−∞
dt′ e−λ(t−t′)ξs(t′)

+ S

∫ t

−∞
dt′
∫ t′

−∞
dt′′ e−λ(t−t′)e−λ(t′−t′′)ξω(t′′).

(11)

With this choice of initial time any effects of initial con-
ditions drop out and the effects of noise are highlighted.

2.3 Correlations

The equations for the vorticity with their exponential
damping and a white-noise source represent an Ornstein-
Uhlenbeck process and thus lead to exponentially decaying
correlations [20,21]. Formally this follows from

Cω,ω(t, τ) = 〈ω(t)ω(τ)〉 = e−λ(t+τ)

×
∫ t

−∞
dt′
∫ τ

−∞
dτ ′ eλ(t′+τ ′)〈ξω(t′)ξω(τ ′)〉, (12)

which yields, in conjunction with equation (10) and the
restriction of the final integral up to min(t, τ),

Cω,ω(t, τ) =
Dω

2λ
e−λ|t−τ |. (13)

The correlation function for the streaks has two compo-
nents, one resulting from the noise in the streak compo-
nents, and one from the non-normal amplification. The
cross terms involving the noise sources in both streak and
vortex drop out since they are uncorrelated. The streak
contribution is again an Ornstein-Uhlenbeck process with

an exponentially decaying correlation function as in equa-
tion (13). The non-normal amplification gives rise to a
contribution from the vortices,

C(vortex)
s,s (t, τ) =∫ t

−∞
dt′
∫ t′

−∞
dt′′

∫ τ

−∞
dτ ′
∫ τ ′

−∞
dτ ′′ S2e−λ(t−t′′+τ−τ ′′)

× 〈ξω(t′′)ξω(τ ′′)〉· (14)

Again via equation (10) and the constraint on the domain
of integration to min(t′, τ ′), the vortex contribution to the
streak-streak correlation function becomes

C(vortex)
s,s (t, τ) =

S2Dω

4λ3
(1 + λ|t − τ |) e−λ|t−τ |. (15)

This shows clearly an algebraic contribution that results
from the transient-growth characteristic of a non-normal
system. For small time-differences, the cusp at the origin
for the Ornstein-Uhlenbeck process becomes a rounded,
quadratic maximum. The total correlation function

Cs,s(t, τ) =
(

Ds

2λ
+

S2Dω

4λ3
(1 + λ|∆|)

)
e−λ|∆|, (16)

with the time difference ∆ ≡ t − τ , is symmetric in ∆
and decays monotonically. Formally, this calculation is
equivalent to that for a linearly damped process exposed
to both white noise (the driving of the streaks) and ex-
ponentially correlated noise (the cross coupling from the
vortices) [20,21]. What is specific to our case is that the
coloured-noise component is generated dynamically by
the structure of the non-normal system. Cross correlations
between vortex and streak can be calculated similarly; and
they provide interesting insights into non-normal amplifi-
cation. We define

Cω,s(t, τ) = 〈ω(t)s(τ)〉· (17)

Then, for t > τ , i.e., if the streak is probed before the
vortex, cross correlations decay exponentially as

Cω,s(t, τ) =
S

4λ2
Dωe−λ(t−τ), for t > τ. (18)

However, for t < τ , i.e., if the streak is probed after the
vortex, the driving of the streak by the vortex gives rise
to the correlation function

Cω,s(t, τ) =
S

4λ2
Dω (1 + 2λ(τ − t)) e−λ(τ−t),

for t < τ, (19)

which increases first, for short times, and then decreases.
It has a maximum that lies about 21% above the value
at zero, at λ(τ − t) = 1/2. The cross correlation thus
provides a convenient and characteristic measure of the
lift-up effect. A comparison between the three correlation
functions discussed above is shown in Figure 2.
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Fig. 2. Correlation functions (see text) for vortex-streak coupling with noise of equal intensity in each component. The
correlation functions are normalised by their values at zero, ∆ is the time difference, and λ, which has dimensions of inverse
time, is defined in the text.

3 Noisy shear flows

In order to model noise in a shear flow, we have to allow
for spatially fluctuating velocity fields. The dynamics we
want to study, the interaction between streaks and vor-
tices, is mediated by the background shear flow. While
the detailed shape of either object and also the gradient
of the shear flow will depend on the specific boundary
conditions, the conclusions about the correlation function
should be less sensitive. For instance, the vortex-streak
recycling mechanism is very similar in flows with rigid
boundary conditions and in those with free-slip boundary
conditions [13,14]. We, therefore, choose the theoretically
most convenient form of free slip boundary conditions so
that we can use a Fourier representation for the velocity
field,

u(x, t) =
∑
k

u(k, t)eik·x (20)

and also for the noise,

ξ(x, t) =
∑
k

ξ(k, t)eik·x. (21)

The linearized Navier-Stokes equation (1) becomes

u̇(k, t) + Suz(k, t)ex = −νk2u(k, t) + ξ(k, t). (22)

As in the previous section we assume that the wave vectors
have no downstream component. The stochastic force ξ (or
noise) satisfies

〈ξi(k, t)〉 = 0, (23)

〈ξi(k, t)ξj(k′, t′)〉 = A(k)Pij(k)δ(k + k′)δ(t − t′), (24)

where A(k) is the amplitude of the variance (whose pre-
cise functional form does not matter for the moment but
which will be discussed further at the end of this section),
Pij(k) = (δij−kikj/k2) is the transverse projector that en-
forces the incompressibility condition, and i and j denote
Cartesian components. We assume, for simplicity, that the
system is infinite; the effects of boundary conditions will
be included presently by suitable constraints on kz as in
the previous section. The temporal correlation functions
we would like to calculate (cf. Sect. 2) are

Cij(t, t′) = 〈〈ui(t)uj(t′)〉〉, (25)

where 〈〈· · · 〉〉 stands for an integration over all points in
the volume under consideration and an average over dif-
ferent realizations of the noise. Given our Fourier repre-
sentation this becomes

Cij(t, t′) =
∑
k

〈ui(k, t)uj(−k, t′)〉; (26)

now only an average over different realizations of the noise
remains for every wave number k. This average can be
calculated for each wave number individually and the sum
can then be evaluated. Let us first write equation (22) in
component form:

u̇x(k, t) + Suz(k, t) = −νk2ux(k, t) + ξx(k, t); (27)

u̇y(k, t) = −νk2uy(k, t) + ξy(k, t); (28)

u̇z(k, t) = −νk2uz(k, t) + ξz(k, t). (29)

The projection onto divergence-free velocity fields and
noise terms implies that the last two equations are cou-
pled; they can thus be represented by a single field uω from
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which the y and z Cartesian components can be obtained
as follows:

uy(k, t) = −uω(k, t)kz/k; (30)
uz(k, t) = uω(k, t)ky/k. (31)

Now only two equations remain for each k:

u̇x(k, t) + (Sky/k)uω(k, t) = −νk2ux(k, t) + ξx(k, t);
(32)

u̇ω(k, t) = −νk2uω(k, t) + ξω(k, t);
(33)

and the noise terms satisfy

〈ξa(k, t)ξb(k′, t′)〉 = A(k)δabδ(k + k′)δ(t − t′), (34)

where the indices a and b stand for, respectively, the noise
components in downstream (x) and perpendicular direc-
tion (of vortex form, hence index ω). Equations (32, 33)
are of the same form as equation (9) so we can iden-
tify λ with νk2 and S in equation (9) with S ky/k in
equation (32). We can therefore use the correlation func-
tions (13, 16) and (18, 19) calculated previously along with
the expansion of the velocity field (25) and (26) to obtain
the correlation functions between spanwise and normal-
velocity component (subscripts 2 and 3, respectively),

C2,2 =
∑
k

k2
z

k2
〈uω(k, t)uω(−k, t′)〉, (35)

C3,3 =
∑
k

k2
y

k2
〈uω(k, t)uω(−k, t′)〉, (36)

C2,3 =
∑
k

−kzky

k2
〈uω(k, t)uω(−k, t′)〉, (37)

in terms of

〈uω(k, t)uω(−k, t′)〉 =
1

2νk2
A(k)e−νk2|t−t′|. (38)

Thus these correlation functions decay exponentially; and
unless there is an asymmetry in the weighting of wave
numbers through the amplitude A(k), the cross correla-
tion C2,3 vanishes on account of the antisymmetry under
reflection of each wave number individually. The correla-
tion function for the downstream component (subscript 1)
becomes

C1,1(t, t′) =
∑
k

A(k)
2νk2

(
1 +

S2k2
y

2ν2k6

(
1 + νk2|∆|)

)

× e−νk2|∆|, (39)

where ∆ = t − t′ is the difference in times. The cross
correlations between vortex (as measured by the normal,
i = 3, component of the velocity) and streak (measured
by the downstream, j = 1, component) becomes

C3,1(t, t′) =
∑
k

Sk2
y

νk3

A(k)
4νk2

e−νk2(t−t′),

for t > t′, (40)

and

C3,1(t, t′) =
∑
k

Sky

νk3

A(k)
4νk2

(1 + 2νk2(t′ − t))e−νk2(t′−t),

for t < t′. (41)

Interchanging 1 and 3 shows the symmetry C1,3(t, t′) =
C3,1(t′, t).

The spatial dependence or, equivalently, the wave-
vector dependence of the correlation functions is given
by the summands in equations (35–37). These correlation
functions have high powers of the absolute value of k in the
denominator, so all expressions are divergent for k → 0,
and thus dominated by the smallest wave numbers. In the
absence of shear, this divergence is much milder if we use
the form of A(k) appropriate for thermal noise [11]. How-
ever, more singular forms have been used for A(k) in an
effort to obtain the Kolmogorov k−5/3 energy spectrum
at the level of a one-loop renormalization group [22]. Of
course the nonlinear term plays a crucial role in such cal-
culations so it is not clear whether it is appropriate to use
such singular forms for A(k) in our study which does not
include nonlinearities.

So, unless the form of A(k) favors a different selection,
the correlations will be dominated by the smallest wave
numbers. Given the bounding surfaces in the z-direction,
separated by a distance d, we have a normal wave number
kz = nπ/d, with n a non-vanishing integer, and a con-
tinuous spanwise wave number ky. The smallest value of
n is n = 1 and the associated optimal ky is nπ/d. Rigid
boundary conditions may change these scales somewhat.

4 Concluding remarks

We have discussed correlations in noisy shear flow, both
at the level of a simple model with two degrees of free-
dom and in a model with spatially varying velocity fields.
The main result is that the non-normal coupling between
downstream vortices and streaks is reflected in the tem-
poral cross correlation function between the downstream
and normal velocity components.

While there have been many studies of spatial corre-
lations (Townsend [23] summarizes a large body of lit-
erature), few have addressed temporal correlations and
hardly any the cross correlations we described here. For
instance, Farrell et al. [8] study only the variance main-
tained by forcing a noisy shear flow. Onuki [11] concen-
trates on the case in which A(k) has the form appropriate
for thermal noise and then calculates the renormalisation
of the viscosity because of the nonlinear term. Bassam
et al. [24] concentrates on energy amplification but not
on the correlation functions we consider. Blackwelder and
Kovasznay [25] measured the cross correlations but their
diagrams do not provide sufficient detail at short times.

It is, therefore, only in recent numerical work on La-
grangian models [15] that the Lagrangian version of this
cross correlation has been considered [26]. Analysis of La-
grangian data shows indeed the asymmetry in the cross
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correlation due to the non-normal effects. Eulerian cross
correlations have been studied in numerical simulations of
turbulent shear flows [27] and they also show the cross
correlations and their asymmetry in time [28].

These numerical simulations also indicate that the re-
lation of our linear model with independent, additive and
white in time random perturbations to natural fluctua-
tions in a turbulent flow is not as far fetched as it may
seem. Certain time scales and quantitative details will be
affected by the nonlinearities neglected in our calculation,
but if there is an overall shear the main mechanism of
non-normal growth will always be present, and that is at
the heart of the cross correlations we study here.

Many of the features of the cross correlations we dis-
cuss should be accessible experimentally. The exponen-
tial correlation in the vortices should be reflected in the
correlations of transversal, i.e., spanwise and normal, ve-
locity components. The streaks are a property of the
downstream velocity component and the long correlations
should be visible there. Finally, the streak-vortex correla-
tions should be noticeable in longitudinal-transversal cor-
relations. We are not aware of experimental measurements
of such correlations. The most direct test would involve
fluctuations in laminar shear flows. Two experimental set
ups come to mind:

1. One could exploit the inevitable free-stream turbu-
lence in a wind tunnel as a noise source. A shear gradi-
ent can then be imposed by a flat plate, above which a
linear shear gradient forms. Crossed hotwire anemome-
ters can be used to characterise the statistics of the
upstream noise and the velocity field above the plate.
The free decay of the noise between the point of charac-
terisation and the point of measurement should have
a negligible effect. Reynolds numbers should be low
enough so that no turbulence transitions in the shear
layer are induced.

2. There are several experiments or proposals for driving
and influencing flows in electrically conducting fluids
by electrical and magnetic fields [29–31]. Random per-
turbations of well defined strength could be induced
by random fluctuations in the currents. Ideally, flow
geometries that are closed, such as a Taylor-Couette
apparatus, or spatially localized, as in a plane Couette
flow [32,33] should be used. Such a setup should allow
for a good control of the noise and should avoid com-
plications arising from the advection of perturbations.

Finally, we would like mention that there is growing
interest in turbulent transport in magnetohydrodynamics
in the presence of a background shear [34]. The techniques
developed here can be applied fruitfully to this case as
well, as we will show elsewhere [35].
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